Kronig-penny modal

 The Kronig–Penney model (named after Ralph Kronig and William Penney[2]) is a simple, idealized quantum-mechanical system that consists of an infinite periodic array of rectangular potential barriers.

The potential function is approximated by a rectangular potential:

Rectangular potential graph of ions equally spaced a units apart. Rectangular areas of height v0 are drawn directly underneath each ion, starting at the x-axis and going downwards.

Using Bloch's theorem, we only need to find a solution for a single period, make sure it is continuous and smooth, and to make sure the function u(x) is also continuous and smooth.

Considering a single period of the potential:
We have two regions here. We will solve for each independently: Let E be an energy value above the well (E>0)

{\mathrm  {For}}\quad 0<x<(a-b) :
{-\hbar ^{2} \over 2m}\psi _{{xx}}=E\psi
\Rightarrow \psi =Ae^{{i\alpha x}}+A'e^{{-i\alpha x}}\quad \left(\alpha ^{2}={2mE \over \hbar ^{2}}\right)
{\mathrm  {For}}\quad -b<x<0 :
{-\hbar ^{2} \over 2m}\psi _{{xx}}=(E+V_{0})\psi
\Rightarrow \psi =Be^{{i\beta x}}+B'e^{{-i\beta x}}\quad \left(\beta ^{2}={2m(E+V_{0}) \over \hbar ^{2}}\right).

To find u(x) in each region, we need to manipulate the electron's wavefunction:

\psi (0<x<a-b)=Ae^{{i\alpha x}}+A'e^{{-i\alpha x}}=e^{{ikx}}\cdot \left(Ae^{{i(\alpha -k)x}}+A'e^{{-i(\alpha +k)x}}\right)\,\!
\Rightarrow u(0<x<a-b)=Ae^{{i(\alpha -k)x}}+A'e^{{-i(\alpha +k)x}}.\,\!

And in the same manner:

u(-b<x<0)=Be^{{i(\beta -k)x}}+B'e^{{-i(\beta +k)x}}.

To complete the solution we need to make sure the probability function is continuous and smooth, i.e.:

\psi (0^{{-}})=\psi (0^{{+}})\qquad \psi '(0^{{-}})=\psi '(0^{{+}}).

And that u(x) and u′(x) are periodic:

u(-b)=u(a-b)\qquad u'(-b)=u'(a-b).

These conditions yield the following matrix:

{\begin{pmatrix}1&1&-1&-1\\\alpha &-\alpha &-\beta &\beta \\e^{{i(\alpha -k)(a-b)}}&e^{{-i(\alpha +k)(a-b)}}&-e^{{-i(\beta -k)b}}&-e^{{i(\beta +k)b}}\\(\alpha -k)e^{{i(\alpha -k)(a-b)}}&-(\alpha +k)e^{{-i(\alpha +k)(a-b)}}&-(\beta -k)e^{{-i(\beta -k)b}}&(\beta +k)e^{{i(\beta +k)b}}\end{pmatrix}}{\begin{pmatrix}A\\A'\\B\\B'\end{pmatrix}}={\begin{pmatrix}0\\0\\0\\0\end{pmatrix}}.

For us to have a non-trivial solution, the determinant of the matrix must be 0. This leads us to the following expression:

\cos(ka)=\cos(\beta b)\cos[\alpha (a-b)]-{\alpha ^{2}+\beta ^{2} \over 2\alpha \beta }\sin(\beta b)\sin[\alpha (a-b)].

To further simplify the expression, we perform the following approximations:

b\to 0;\quad V_{0}\to \infty ;\quad V_{0}b={\mathrm  {constant}}
\Rightarrow \beta ^{2}b={\mathrm  {constant}};\quad \alpha ^{2}b\to 0
\Rightarrow \beta b\to 0;\quad \sin(\beta b)\to \beta b;\quad \cos(\beta b)\to 1.

The expression will now be:

{\displaystyle \cos(ka)=\cos(\alpha a)+P{\frac {\sin(\alpha a)}{\alpha a}},\qquad P={\frac {mV_{0}ba}{\hbar ^{2}}}.}

For energy values inside the well (E < 0), we get:

{\displaystyle \cos(ka)=\cos(\beta b)\cosh[\alpha (a-b)]-{\beta ^{2}-\alpha ^{2} \over 2\alpha \beta }\sin(\beta b)\sinh[\alpha (a-b)],}

with {\displaystyle \alpha ^{2}={2m|E| \over \hbar ^{2}}} and {\displaystyle \beta ^{2}={2m(V_{0}-|E|) \over \hbar ^{2}}}.

Following the same approximations as above ({\displaystyle b\to 0;\,V_{0}\to \infty ;\,V_{0}b=\mathrm {constant} }), we arrive at

{\displaystyle \cos(ka)=\cosh(\alpha a)+P{\frac {\sinh(\alpha a)}{\alpha a}}}

with the same formula for P as in the previous case {\displaystyle \left(P={\frac {mV_{0}ba}{\hbar ^{2}}}\right)}

Comments

Popular posts from this blog

Operation Safed Sagar

Buck boost converter

Basic Definitions